Home Posts tagged "Ulnar Collateral Ligament" (Page 2)

Should Pitching Coaches Understand Research Methods and Functional Anatomy?

Quite some time ago, I met a pitching coach who made a bold statement to me:

"Most Major League pitchers have terrible mechanics."

I don't know if he meant that they were mechanics that could lead to injuries, or simply mechanics that would interfere with control and velocity development, but either way, I shrugged it off.  Why?

Their mechanics are so terrible that they're in the top 0.0001% of people on the planet who play their sport.  And, they're paid extremely well to be terrible, I suppose.

Kidding aside, this comment got me to thinking about something that's been "festering" for years now, and I wanted to run it by all of you today to get your impressions on it.  In other words, this post won't be about me ranting and raving about how things should be, but rather me starting a dialogue on one potential way to get the baseball development industry to where it needs to be, as it clearly isn't there yet (as evidenced by the fact that more pitchers are getting hurt nowadays than ever before).

The way I see it, mechanics are typically labeled as "terrible" when a pitcher has:

1. Trouble throwing strikes

2. Pitching velocity considerably below what one would expect, given that pitcher's athleticism

3. Pain when throwing

4. Mechanical issues that theoretically will predispose him to injury 

In the first three cases, anyone can really make these observations.  You don't need to be trained in anything to watch the walk totals pile up, read a radar gun, or listen when a pitcher says, "It hurts."  Moreover, these issues are easier to coach because they are very measurable; pitchers cut down on their walks, throw harder, and stop having pain.

Issue #4 is the conundrum that has lead to thousands of pissing matches among pitching coaches.  When a pitcher gets hurt, everyone becomes an armchair quarterback.  The two biggest examples that come to mind are Mark Prior and Stephen Strasburg.

Prior was supposed to be one of the best of all-time before shoulder surgeries derailed his career.  After the fact, everyone was quick to pin all the issues on his mechanics.  What nobody has ever brought to light is that over the course of nine years, his injuries looked like the following (via Wikipedia):

1. Hamstrings strain (out for 2002 season)
2. Shoulder injury (on-field collision - missed three starts in 2003)
3. Achilles injury (missed two months in 2004)
4. Elbow strain (missed 15 days in 2004)
5. Elbow injury (missed one month in 2005 after being hit by line drive)
6. Rotator cuff strain (missed three months in 2006)
7. Oblique strain (missed two starts in 2006)
8. Rotator cuff strain (ended 2006 season on disabled list)
9. Shoulder surgery (missed entire 2007 season, and first half of 2008)
10. Shoulder capsule tear (out for season after May 2008)
11. Groin injury (missed last two months of 2011 season)

By my count, that is eleven injuries - but four of them were non-arm-related.  And, two of them (both early in his career) were contact injuries.  Who is to say that he isn't just a guy with a tendency toward degenerative changes on a systemic level?  How do we know one of the previous injuries didn't contribute to his arm issues later on?  How do we know what he did for preventative arm care, rehabilitation, throwing, and strength and conditioning programs? We don't have his medical records from earlier years to know if there were predisposing factors in place, either.  I could go on and on.

The issue is that our sample size is one (Mark Prior) because you'll never see this exact collection of issues in any other player again.  It's impossible to separate out all these factors because all issues are unique.  And, it's one reason why you'll never see me sitting in the peanut gallery criticizing some teams for having injured players; we don't have sufficient information to know exactly why a player got hurt - and chances are, the medical staff on those teams don't even have all the information they'd like to have, either.

Strasburg has been labeled the best prospect of all-time by many, and rightfully so; his stuff is filthy and he's had the success to back it up.  Of course, the second he had Tommy John surgery, all the mechanics nazis came out of their caves and started berating the entire Washington Nationals organization for not fixing the issue (an Inverted W) proactively to try to prevent the injury.  Everybody is Johnny Brassballs on the internet.

To that end, I'll just propose the following questions:

1. Did Strasburg not do just fine with respect to issues 1-3 in my list above?

2. Would you want to be the one to screw with the best prospect of all-time and potentially ruin exactly what makes him effective?

3. Do we really know what the health of his elbow was when the Nationals drafted him?

4. Do we know what his arm care, throwing, and strength and conditioning programs were like before and after being drafted?

There are simply too many questions one can ask with any injury, and simply calling mechanics the only contributing factor does a complex issue a disservice - especially since young athletes are growing up with more and more physical dysfunction even before they have mastered their "mature" mechanics.

The Inverted W theory is incredibly sound; Chris O'Leary did a tremendous job of making his case - and we certainly work to coach throwers out of this flaw - but two undeniable facts remain.  First, a lot of guys still throw with the Inverted W and don't have significant arm issues (or any whatsoever).  They may have adequate mobility and stability in the right places (more on this below) to get by, or perhaps they have just managed their pitch counts and innings appropriately to avoid reaching threshold.  I suspect that you might also find that many of these throwers can make up for this "presumed fault" with a quick arm combined with a little extra congenital ligamentous laxity, or subtle tinkering with some other component of their timing.

Second, a lot of guys who don't have an Inverted W still wind up with elbow or shoulder injuries. Good research studies bring issues like these to light, and nobody has really gotten a crew of inverted W guys and non-inverted W guys together to follow injury rates over an extended period of time while accounting for variables such as training programs, pitch counts, and pitch selection (e.g., sliders vs. curveballs). We don't know if some of these other factors are actually more problematic than the mechanics themselves, as it's impossible to control all these factors simultaneously in a research format.

As such, here we have my first set of questions:

Don't you think that pitching coaches need to make a dedicated effort to understand research methods so that they can truly appreciate the multifactorial nature of injuries?  And, more importantly, wouldn't learning to read research help them to understand which mechanical issues are the true problem?  

The Inverted W is certainly an issue, but there are many more to keep in mind. Just my opinion: I think the baseball industry would be much better off if pitching coaches read a lot more research.

Now, let's move on to my second question.  First, though, I want to return to the Inverted W example again. I have not met more than a few pitching coaches who can explain exactly what structures are affected by this mechanical flaw because they don't understand what functionally is taking place at the shoulder and elbow.  They don't understand that excessive glenohumeral (shoulder) horizontal abduction, extension, and external rotation can all lead to anterior glide of the humerus, creating more anterior instability and leading to injuries to the anterior glenohumeral ligaments and labrum.  Meanwhile, the biceps tendon picks up the slack as a crucial anterior stabilizer.  They also don't appreciate how these issues are exacerbated by poor rotator cuff function and faulty scapular stabilization patterns.  And, they don't appreciate that these issues are commonly present even in throwers who don't demonstrate an Inverted W pattern.

At the elbow, they also can't explain why, specifically, the Inverted W can lead to problems. They don't understand that the timing issue created by the "deep" set-up leads to greater valgus stress at lay-back because the arm lags.  They can't explain why some players have medial issues (UCL injuries, ulnar nerve irritation, flexor/pronator strains, and medial epicondyle stress fractures) while other players have lateral issues (little league elbow, osteochondritis dissecans of radial capitellum) from the same mechanical flaws.  They can't explain why a slider thrown from an Inverted W position would be more harmful than a curveball.

I can explain it to you - and I can explain it to my athletes so that they understand, too. I've also met a lot of medical professionals who can clearly outline how and why these structures are injured, but we aren't the ones coaching the pitchers on the mounds.  The pitching coaches are the ones in those trenches.

To that end, I propose my second set of questions:

Don't you think pitching coaches ought to make an effort to learn functional anatomy in order to understand not just what gets injured, but how those injuries occur?  Wouldn't it give them a more thorough understanding of how to manage their pitchers, from mechanical tinkering, to pitch selection, to throwing volume?  And, wouldn't it give them a more valid perspective from which to contribute to pitchers' arm care programs in conjunction with rehabilitation professionals and strength and conditioning coaches? 

The problem with just saying "his mechanics suck" is that it amounts to applying a theory to a sample size of one.  That's not good research.  Additionally, this assertion is almost always taking place without a fundamental understanding of that pitcher's functional anatomy.  It amounts to coaching blind.

To reiterate, this was not a post intended to belittle anyone, but rather to bring to light two areas in which motivated pitching coaches could study extensively in order to really separate themselves from the pack.  Additionally, I believe wholeheartedly in what Chris O'Leary put forth with his Inverted W writings; I just used it as one example of a mechanical flaw that must be considered as part of a comprehensive approach to managing pitchers.

With that said, I'd love to hear your opinions on these two sets of questions in the comments section below. Thanks in advance for your contributions.

Sign-up Today for our FREE Baseball Newsletter and Receive Instant Access to a 47-minute Presentation from Eric Cressey on Individualizing the Management of Overhead Athletes!

Name
Email
Read more

Strength and Conditioning Stuff You Should Read: 3/27/12

Here are some recommended strength and conditioning readings for the week: Recovery: Athlete vs. Average Joe - Patrick Ward summarized some great research on how it takes a lot more to negatively impact performance when you reduce the outside stress in one's life. Force of Habit - This article by Lindsay Berra just ran in ESPN The Magazine.  Lindsay interviewed me for the piece on Tommy John surgery (ulnar collateral ligament reconstruction), and while I wasn't mentioned in the final version, I thought she did an outstanding job of outlining some complex topics - everything from the mechanics to the politics - in the piece. 21 Strength Exercises for Injury-Free Mass - Bret Contreras provides some great options - and the rationale for them - for those looking to make their strength training programs a little more joint-friendly over the long-term. Sign-up Today for our FREE Newsletter and receive a four-part video series on how to deadlift!
Name
Email
Read more

Baseball Strength and Conditioning Programs: How Much Rotator Cuff Work is Too Much? – Part 1

In a recent presentation in front of a bunch of baseball coaches, I made the following statement - and it turned a lot of heads:

I think most people overtrain the rotator cuff nowadays, and they do so with the wrong exercises, anyway.

To illustrate my point, I'm going to ask a question:

Q: What is the most common complication you see in guys as they rehabilitate following a Tommy John Surgery?

A: Shoulder problems - generally right around the time they get up to 120 feet.

Huh?  Shoulder pain is a post-operative complication of an elbow surgery?  What gives?

First, I should make a very obvious point: many of these guys deal with shoulder stiffness as they get back to throwing simply because they've been shut down for months.  That I completely expect - but remember that it's stiffness, and not pain.  They always throw their way out of it.

The more pressing issue is what is taking place in their rehabilitation - and more specifically, what's taking place with the synergy between their rehabilitation and throwing program. Let me explain.

Rehabilitation following a UCL reconstruction is extensive.  While different physical therapists certainly have different approaches, it will always be incredibly heavy on rotator cuff strength and timing, as well as adequate function of the scapular stabilizers.  Guys always make huge strides on this front during rehab, but why do so many have shoulder pain when they get further out with their long tossing?  The answer is very simple:

Most people don't appreciate that throwing a baseball IS rotator cuff training.

Your cuff is working tremendously hard to center the humeral head in the glenoid fossa.  It controls excessive external rotation and anterior instability during lay-back.

It's fighting against distraction forces at ball release.

And, it's controlling internal rotation and horizontal adduction during follow-through.

Simultaneously, the scapular stabilizers are working incredibly hard to appropriately position and stabilize the scapula on the rib cage in various positions so that it can provide an ideal anchor point for those rotator cuff muscles to do their job.

A post-op Tommy John thrower - and really every player going through a throwing program - has all the same demands on his arm (even if he isn't on the mound, where stress is highest).  And, as I wrote previously in a blog about why pitchers shouldn't throw year-round, every pitcher is always throwing with some degree of muscle damage at all times during the season (or a throwing program).

Keeping this in mind, think about the traditional Tommy John rehabilitation approach.  It is intensive work for the cuff and scapular stabilizers three times a week with the physical therapists - plus many of the same exercises in a home program for off-days.  They're already training these areas almost every day - and then they add in 3-6 throwing sessions a week.  Wouldn't you almost expect shoulder problems?  They are overusing it to the max!  This is a conversation I recently had with physical therapist Eric Schoenberg, and he made another great point:

Most guys - especially at higher levels - don't have rotator cuff strength issues; they have rotator cuff timing issues.

In throwing - the single-fastest motion in all of sports - you're better off having a cuff that fires at the right time than a cuff that fires strong, but late.  Very few rotator cuff exercise programs for healthy pitchers take that into account; rather, it's left to those doing rehabilitation.  Likewise, most of the programs I see altogether ignore scapular stability and leave out other ways to train the cuff that are far more functional than just using bands.

Now, apply this example back to the everyday management of pitchers during the season. Pitchers are throwing much more aggressively: game appearances, bullpens, and long toss.  They need to do some rotator cuff work, but it certainly doesn't need to be every day like so many people think.

I'll cover how much and what kind in Part 2.  In the meantime, if you'd like to learn more about the evaluation and management of pitchers, check out Optimal Shoulder Performance.

Sign-up Today for our FREE Baseball Newsletter and Receive a Copy of the Exact Stretches used by Cressey Performance Pitchers after they Throw!

Name
Email
Read more

Shoulder Mobility Drills: How to Improve External Rotation (if you even need it)

Last summer, a college pitcher came up to Cressey Performance from the South to train for a month before his summer league got underway. He was seven months post-op on a shoulder surgery (Type 2 SLAP) and had been working his way back. Unfortunately, his arm was still bothering him a bit when he got up to see us.

After the first few days at CP, though, he told me that his arm felt as good as it’s felt in as long as he could remember. He’d been doing a comprehensive strength and conditioning program, but the “impact” stuff for him had been soft tissue work, some Postural Restoration Institute drills, an emphasis on thoracic mobility, and manual stretching into internal rotation, horizontal adduction, and shoulder flexion. From all the rehab, his cuff was strong and scapular stabilizers were functioning reasonably well – which led me to believe that his issues were largely due to tissue shortness and/or stiffness.

This realization made me immediately wonder what he’d been doing in the previous months for mobility work for his arm – so I asked. He then demonstrated the manual stretching series that every pitcher on his team went through every day on the table with their athletic trainer. Each stretch was done for 2x20s – and two of those stretches took him into extreme external rotation and horizontal abduction. I was pretty shocked.

Me: “You’re probably not the only guy on your team rehabbing right now, huh?”

Him: “No; there are actually too many to count.”

Me: “Elbows, too, I’m sure.”

Him: “Yep.”

Want to irritate a labrum, biceps tendon, or the undersurface of the rotator cuff? Stretch a thrower into extreme external rotation and simulate the peel-back mechanism. This also increases anterior capsular laxity and likely exacerbates the internal impingement mechanism over the long-term. To reiterate, this is a bad stretch!

Want to make an acromioclavicular joint unhappy? Stretch a thrower into horizontal abduction like this (again, this is a BAD stretch that is pictured):

Want to irritate an ulnar nerve or contribute to the rupture of an ulnar collateral ligament? Make sure to apply direct pressure to the forearm during these dangerous stretches to create some valgus stress. This is a sure-fire way to make a bad stretch even worse:

These stretches are very rarely indicated in a healthy population – especially pitchers who already have a tendency toward increased external rotation. The shoulder is a delicate joint that can’t just be manhandled – and when you’re dealing with shoulders that are usually also pretty loose (both from congenital and acquired factors), you’re waiting for a problem when you include such stretches. In fact, I devoted an entire article to this: The Right Way to Stretch the Pecs.

Everyone thinks that shoulder external rotation and horizontal abduction alone account for the lay-back in the extreme cocking position.

In reality, though, this position is derived from a bunch of factors:

1. Shoulder External Rotation Range-of-Motion – and this is the kind of freaky external rotation you’ll commonly see thanks to retroversion and anterior laxity:

2. Scapular Retraction/Posterior Tilt

3. Thoracic Spine Extension/Rotation

4. Valgus Carrying Angle

So, how do you improve lay-back without risking damage to the shoulder and elbow?

1. Soft tissue work on Pec minor/major and subscapularis – Ideally, this would be performed by a qualified manual therapist – especially since you’re not going to be able to get to subscapularis yourself. However, you can use this technique to attack the pecs:

2. Exercises to improve scapular retraction/depression/posterior tilt – This could include any of a number of horizontal pulling exercises or specific lower trap/serratus anterior exercises like the forearm wall slide with band.

3. Incorporate specific thoracic spine mobility drills – In most pitchers, you want to be careful about including thoracic spine mobility drills that also encourage a lot of glenohumeral external rotation. However, when we assess a pitcher and find that he’s really lacking in this regard, there are two drills that we use with them. The first is the side-lying extension-rotation, which is a good entry level progression because the floor actually limits external rotation range-of-motion, and it’s easy to coach. I tell athletes that they should think of thoracic spine extension/rotation driving scapular retraction/depression, which in turn drives humeral external rotation (and flexion/horizontal abduction). Usually, simply putting your hands on the shoulder girdle and guiding them through the motion is the best teaching tool.

A progression on the side-lying extension-rotation is the side-lying windmill, which requires a bit more attention to detail to ensure that the range-of-motion comes from the right place. The goal is to think of moving exclusively from the thoracic spine with an appropriate scapular retraction/posterior tilt. In other words, the arm just comes along for the ride. The eyes (and head) should follow the hand wherever it goes.

Again, these are only exercises we use with certain players who we’ve deemed deficient in external rotation. If you’re a thrower, don’t simply add these to your routine without a valid assessment from someone who is qualified to make that estimation. You could actually make the argument that this would apply to some folks in the general population who have congenital laxity as well (especially females).

4. Throw!!!!! – Pitchers gain a considerable amount of glenohumeral external rotation over the course of a competitive season simply from throwing. Sometimes, the best solution is to simply be patient. I really like long toss above all else for these folks.

In closing, there are three important things I should note:

1. You don’t want to do anything to increase valgus laxity.

2. You’re much more likely to get hurt from being “too loose” than you are from being “too tight.” When it comes to stretching the throwing shoulder, “gentle” is the name of the game – and all mobility programs should be as individualized as possible.

3. Maintaining internal rotation is a lot more important than whatever is going on with external rotation. In fact, this piece could have just as easily been named "The Two Stretches Pitchers Shouldn't Do, Plus a Few That Only Some of Them Need."

To learn more about testing, training, and treating throwing shoulders, check out Optimal Shoulder Performance: From Rehab to High Performance.

Sign-up Today for our FREE Baseball Newsletter and Receive a Copy of the Exact Stretches used by Cressey Performance Pitchers after they Throw!

Name
Email
Read more

Pitching Injuries: It’s Not Just What You’re Doing; It’s What You’ve Already Done

A while back, this article on pitching injuries became the single-most popular piece in EricCressey.com history:

Your Arm hurts?  Thank Your Little League, Fall Ball, and AAU Coaches

In that feature, I made the following statement:

We can do all the strength training, mobility work, and soft tissue treatments in the world and it won’t matter if they’re overused – because I’m just not smart enough to have figured out how to go back in time and change history. Worried about whether they’re throwing curveballs, or if their mechanics are perfect?  It won’t matter if they’ve already accumulated too many innings.

While athletes might be playing with fire each time they throw, the pain presentation pattern is different.  You burn your hand, and you know instantly.  Pitching injuries take time to come about. Maybe you do microscopic damage to your ulnar collateral ligament each time you throw – and then come back and pitch again before it’s had time to fully regenerate.  Or, maybe you ignore the shoulder internal rotation deficit and scapular dyskinesis you’ve got and it gets worse and worse for years – until you’re finally on the surgeon’s table for a labral and/or rotator cuff repair.  These issues might be managed conservatively if painful during the teenage years (or go undetected if no pain is present) – but once a kid hits age 18 or 19, it seems to automatically become “socially acceptable” to do an elbow or shoulder surgery.

Sure enough, just yesterday, reader Paul Vajdic sent me this article from the Shreveport Times. The author interviews world-renowned orthopedic surgeon Dr. James Andrews about the crazy increase in the number of Tommy John surgeries he'd performed over the past decade.

A comment he made really jumped out at me, in light of my point from above:

""I had a kid come in, a 15-year-old from Boca Raton, (Fla.), who tore his ligament completely in two,' Andrews said. 'The interesting thing is when I X-rayed his elbow with good magnification, he has a little calcification right where the ligament attaches to the bone. We're seeing more of that now. He actually got hurt with a minor pull of the ligament when he was 10, 11, 12 years of age. That little calcification gets bigger and, initially, it won't look like anything but a sore elbow. As that matures, it becomes more prominent. It turns into an English pea-size bone piece and pulls part of the ligament off when they're young.'"

In other words, it takes repeated bouts of microtrauma over the course of many years to bring an athlete to threshold - even if they have little to no symptoms along the way.  Injury prevention starts at the youngest ages; otherwise, you're just playing from behind the 8-ball when you start training high school and college players.

In addition to walking away with the perspective that young kids need to be strictly managed with their pitch counts, I hope this makes you appreciate the value of strength and conditioning programs at young ages, too.  For more information, check out my post, The Truth About Strength Training for Kids.

We can't prevent them all, but I do think that initiatives like the IYCA High School Strength Coach Certification in conjunction with pitch count implementation and coaching education are a step in the right direction.

Sign-up Today for our FREE Baseball Newsletter and Receive a Copy of the Exact Stretches used by Cressey Performance Pitchers after they Throw!

Name
Email
Read more

Does a Normal Elbow Really Exist?

I've written quite a bit in the past about how diagnostic imaging (x-rays, MRIs, etc) doesn't always tell the entire story, and that incidental findings are very common.  This applies to the lower back, shoulders, and knees (and surely several other joints).  The scary thing, though, is that we see these crazy structural abnormalities not just in adults, but in kids, too.  Last month, I highlighted research that showed that 64% of 14-15 year-old athletes have structural abnormalities in their knees - even without the presence of symptoms.  Just a month later, newer research is showing that the knee isn't the only hinge joint affected; young throwers' elbows are usually a structural mess as well.  In an American Journal of Sports Medicine study of 23 uninjured, asymptomatic high school pitchers (average age of 16), researchers found the following: Three participants (13%) had no abnormalities. Fifteen individuals (65%) had asymmetrical anterior band ulnar collateral ligament thickening, including 4 individuals who also had mild sublime tubercle/anteromedial facet edema. Fourteen participants (61%) had posteromedial subchondral sclerosis of the ulnotrochlear articulation, including 8 (35%) with a posteromedial ulnotrochlear osteophyte, and 4 (17%) with mild posteromedial ulnotrochlear chondromalacia. Ten individuals (43%) had multiple abnormal findings in the throwing elbow. For me, the 35% with the osteophytes (and chondromalacia) are the biggest concern.  Thickening of the ulnar collateral ligament isn't surprising at all, but marked osseous (bone) abnormalities is a big concern.

Also, as a brief, but important aside, this study was done at the Mayo Clinic in Rochester, Minnesota - which isn't exactly the hotbed of baseball activity that you get down in the South.  Recent research also shows that players in Southern (warm weather) climates have decreased shoulder internal rotation range of motion and external rotation strength compared to their Northern (cold weather) climate counterparts. In other words, I'll be money that the numbers reported in this study are nothing compared to the young pitchers who are constantly abused year-round in the South. The next time you think to yourself that all young athletes - especially throwers - can be managed the same, think again.  Every body is unique - and that's why I'm so adamant about the importance of assessing young athletes. It's one reason why I filmed the Everything Elbow in-service, which would be a great thing to watch if you're someone who manages pitchers.

Sign-up Today for our FREE Newsletter and receive a detailed deadlift technique tutorial!
Name
Email
Read more

Long Toss: Don’t Skip Steps in Your Throwing Program

My good buddy Alan Jaeger has gone to great lengths to bring long tossing to the baseball world.  I discussed why I really like it and what some of the most common long toss mistakes are in two recent posts:

Making the Case for Long Toss in a Throwing Program
The Top 4 Long Toss Mistakes

However, one thing I didn't discuss in those previous blogs was the status quo - which is essentially that long toss distances should not exceed 90-120 feet.  These seemingly arbitrary numbers are actually based on some research discussing where a pitcher's release point changes and the throwing motion becomes less and less like what we see on the mound.  Alan looked further into the origins of the "120 foot rule," and informed me that these programs began in the late 1980s/early 1990s and were based on "post-surgery experience" of a few rehabilitation specialists.

Yes, we're basing modern performance-based throwing programs for healthy pitchers on 20+ year-old return-to-throwing programs that were created for injured pitchers.  It seems ridiculous to even consider this; it's like only recommending body weight glute bridges to a football player looking to improve his pro agility time because you used them with a football player who had knee or low back pain.  It might be part of the equation, but it doesn't improve performance or protect against all injuries.  Let's look further at how this applies to a throwing context, though.

A huge chunk of pitching injuries - including all those that fall under the internal impingement spectrum (SLAP tears, undersurface cuff tears, and bicipital tendinosis), medial elbow pain (ulnar nerve irritation/hypermobility, ulnar collateral ligament tears, and flexor/pronator strains), and even lateral compressive stress (younger pitchers, usually) occur during the extreme cocking phase of throwing.  That looks like this:

It's in this position were you get the peel back mechanism and posterior-superior impingement on the glenoid by the supra- and infraspinatus.  And, it's where you get crazy valgus stress (the equivalent of 40 pounds pulling down on the hand) at the elbow - which not only stresses the medial structures with tensile force, but also creates lateral compressive forces.

In other words, if guys are hurt, this is the most common spot in their delivery that they will typically hurt.

So, logically, the rehabilitation specialists try to keep them away from full ROM to make the surgical/rehab outcomes success - and you simply won't get full range of motion (ROM) playing catch at 60-120 feet.

Effectively, you can probably look at the "progression" like this:

Step 1: 60-120 ft: Low ROM, Low Stress
Step 2: 120+ ft: Medium ROM, Medium Stress
Step 3: 240+ ft: High ROM, Medium Stress
Step 4: Mound Work: High ROM, High Stress

In other words, in the typical throwing program - from high school all the way up to the professional ranks - pitchers skip steps 2 and 3.  To me, this is like using jump rope to prepare for full speed sprinting.  The ROM and ground reaction forces (stress) just don't come close to the "end" activity.

Only problem?  Not everyone is rehabbing.  We're actually trying to get guys better.

Long Toss.  Far.  You'll thank me later.

Want to learn more? Check out Alan's DVD, Thrive on Throwing, to learn more.  He's made it available to my readers at 25% off through this link.

Sign-up Today for our FREE Baseball Newsletter and Receive a Copy of the Exact Stretches used by Cressey Performance Pitchers after they Throw!

Name
Email
Read more

Weight Training for Baseball: Featured Articles

I really enjoy writing multi-part features here at EricCressey.com because it really affords me more time to dig deep into a topic of interest to both my readers and me.  In many ways, it's like writing a book.  Here were three noteworthy features I published in 2010: Understanding Elbow Pain - Whether you were a baseball pitcher trying to prevent a Tommy John surgery or recreational weightlifter with "tennis elbow," this series had something for you. Part 1: Functional Anatomy Part 2: Pathology Part 3: Throwing Injuries Part 4: Protecting Pitchers Part 5: The Truth About Tennis Elbow Part 6: Elbow Pain in Lifters

Strategies for Correcting Bad Posture - This series was published more recently, and was extremely well received.  It's a combination of both quick programming tips and long-term modifications you can use to eliminate poor posture. Strategies for Correcting Bad Posture: Part 1 Strategies for Correcting Bad Posture: Part 2 Strategies for Correcting Bad Posture: Part 3 Strategies for Correcting Bad Posture: Part 4

A New Paradigm for Performance Testing - This two-part feature was actually an interview with Bioletic founder, Dr. Rick Cohen.  In it, we discuss the importance of testing athletes for deficiencies and strategically correcting them.  We've begun to use Bioletics more and more with our athletes, and I highly recommend their thorough and forward thinking services. A New Paradigm for Performance Testing: Part 1 A New Paradigm for Performance Testing: Part 2 I already have a few series planned for 2011, so keep an eye out for them!  In the meantime, we have two more "Best of 2010" features in store before Friday at midnight. Sign-up Today for our FREE Newsletter:
Name
Email
Read more

Managing Sidearm and Submarine Pitchers

Q: I just saw your post about Strasberg and pitching injuries.  This may be hopelessly naive, but - do "submarine" throwers face the same perils?  I'm old enough to remember Kent Telkulve, so it made me think.  It seems as though I see a fair number of throws from SS and 3B positions that appear somewhat submarine-like in motion, so the technique wouldn't be completely unknown. Thoughts? A: In short, the answer would be "yes," they do face the same perils. If you actually slow things down and example joint angles, you'll see that the shoulder and elbow positioning most of these guys get to is very similar to what you see in more overhand throwers.  The difference is in how much lateral trunk tilt they have; the more trunk tilt, the lower the release point.

bradford

The primary difference you'll see is that sidearm/submarine throwers will typically break down at the elbow a lot more than the shoulder.  Aguinaldo and Chambers found that sidearm throwers had significantly higher elbow valgus torques than overhand throwers. It's not surprising, given that they do tend to lead with the elbow a bit more. Position players who throw more sidearm can largely get away with it because a) they don't have anywhere near the volume of throwing in a single outing or a season that pitchers do, and b) they aren't throwing off a mound.  We know that just stepping up onto the elevated mound dramatically increases arm stress.

pedroia

So, what are the practical applications of knowing the demands are, for the most part, very similar? First, spend a considerable amount more time focusing on core stability and working to iron out excessive right-left asymmetries that arise secondary to all the lateral trunk tilt.  In other words, worry as much about the spine as you do about the arm.

joshpapelbon

Second, I'd put an even greater emphasis on soft tissue work at the medial elbow - particularly on the common flexor tendon (the muscles that join to create this tendon protect the ulnar collateral ligament from excessive valgus stress).

Third, as is usually the case, use these guys as relievers to keep their throwing volume lower while still maximizing their utility. Other than that, manage them as if you would any other pitcher - which should always be a tremendously individualized process, anyway! Please enter your email below to sign up for our FREE newsletter.

Name
Email
Read more

More Than Just Pitching Mechanics: The Skinny on Stephen Strasburg’s Injury

Since a lot of folks reading this blog know me as "the baseball guy," I got quite a few email questions about the elbow injury Washington Nationals phenom Stephen Strasburg experienced the other day.  Likewise, it was the talk of Cressey Performance last Friday - and got tremendous attention in the media.  Everyone wants to know: how could this have been prevented?

strasburg

On Thursday's edition of Baseball Tonight, my buddy Curt Schilling made some excellent points about Strasburg's delivery that likely contributed to the injury over time.  Chris O'Leary has also written some great stuff about the Inverted W, which is pretty easily visualized in his delivery.

invertedw

The point I want to make, though, is that an injury like this can never, ever, ever, ever be pinned on one factor.  We have seen guys with "terrible mechanics" (I put that in quotes because I don't think there is such a thing as "perfect mechanics") pitch pain-free for their entire careers.  Likewise, we've seen guys with perfect mechanics break down.  We've seen guys with great bodies bite the big one while some guys with terrible bodies thrive.

The point is that while we are always going to strive to clean things up - physically, mechanically, psychologically, and in terms of managing stress throughout the competitive year - there is always going to be some happenstance in sports at a high level.  As former Blue Jays general manager JP Ricciardi told me last week when we chatted at length, "you've only got so many bullets in your arm."

Strasburg used up a lot of those bullets before he ever got drafted, so it's hard to fault the Nationals at all on this front.  In fact, from this ESPN article that was published when the team thought it was a strain of the common flexor tendon and not an ulnar collateral ligament injury (requiring Tommy John surgery), "Strasburg has told the team he had a similar problem in college at San Diego State and pitched through it."  It's safe to assume that the Nationals rule out a partial UCL tear in their pre-draft MRIs, but you have to consider what a common flexor tendon injury really means.

medialepicondyle

As I wrote in in my "Understanding Elbow Pain" series (of interest: Anatomy, Pathology, Throwing Injuries, and Protecting Pitchers) the muscles that combine to form the common flexor tendon are the primary restraints - in addition to the ulnar collateral ligament - to valgus stress.  If they are weak, overused, injured, dense, fibrotic, or whatever else, more of that stress is going on that UCL - particularly if an athlete is throwing with mechanics that may increase that valgus stress (the Inverted W I noted above) - the party is going to end eventually.  Is it any surprise that this acute injury occurred just a few weeks after Strasburg dealt with a shoulder issue that put him on the disabled list for two weeks?  The body is a tremendously intricate system of checks and balances, and it bit him in the butt.

There are other factors, though.  As a great study from Olsen et al. showed, young pitchers who require surgery "significantly more months per year, games per year, innings per game, pitches per game, pitches per year, and warm-up pitches before a game. These pitchers were more frequently starting pitchers, pitched in more showcases, pitched with higher velocity, and pitched more often with arm pain and fatigue. They also used anti-inflammatory drugs and ice more frequently to prevent an injury."  And, they were also taller and heavier.

valgus

Go back through the last 12-15 years of Stephen Strasburg's life and consider just how many times he's ramped up for spring ball, summer ball, fall ball, and showcases - only so that he can shut down for a week, just to ramp right back up again to try to impress someone else.  Think of how many radar guns he's had to pitch in front of constantly for the past 5-7 years - because velocity is all that matters, right?

Stephen Strasburg's injury wasn't caused by a single factor; it was a product of many.  And, it can't be pinned on Strasburg himself, any of his coaches or trainers, or any of the scouts that watched him.  Blame it in the system that is baseball in America today.

We already knew that this system was a disaster, though.  Yet, people still keep letting their kids go to showcases in December.  Heck, arguably the biggest underclassmen prospect event of the year - the World Wood Bat Tournament in Jupiter, FL - takes places at the end of October.  When they should be resting, playing another sport, or preparing their bodies in the weight room, the absolute best prospects in the country are pitching with dead, unprepared arms just because it's a convenient time for scouts and coaches to recruit - because the season is over.

They're wasting their bullets.

Now, I'm not saying that Strasburg's injury could have been avoided in a different system - but I'd be very willing to bet that it could have been pushed much further back - potentially long enough to allow him to get through a career.  An argument to my point would be that if it wasn't for all these exposures, he wouldn't have developed - but my contention to that fact was that it is well documented that Strasburg "blew up" from a good to an extraordinary pitcher with increased throwing velocity when he made a dedicated effort to getting fit when he arrived at college.

My hope is that young pitchers will learn from this example and appreciate that taking care of one's body is just as important as showing off one's talent.

Sign-up Today for our FREE Baseball Newsletter and Receive a Copy of the Exact Stretches used by Cressey Performance Pitchers after they Throw!
Name
Email
Read more
Page 1 2 3
LEARN HOW TO DEADLIFT
  • Avoid the most common deadlifting mistakes
  • 9 - minute instructional video
  • 3 part follow up series